
AuthN, AuthZ, and
the Growing Menace
of API Breaches

v 1.1

As distributed architectures become more
popular, new API security vulnerabilities are on
the rise. Here’s how to design authentication and
authorization systems to protect web applications
from attack

A famous criminal was once asked why he robbed banks.
“That’s where the money is,” he reportedly answered.

In today’s computing environment, the cloud and cloud-
native applications are where the money is, metaphorically
speaking. For cybercriminals this means the tried-and-true
methods used to breach traditional monolithic applications
are in many ways no longer up to the task.

They’ve risen to the challenge. Attackers have upped their
game to take on modern distributed web architectures. One
trick: Use misconfigured or incomplete authentication and
authorization systems as their entry — like walking through
the bank’s front door to get to the vault.

We’ll explore this modern frontier of cybercrime, understand
how incorrectly used authentication and authorization
systems that guard web interfaces can be exploited, and learn
what organizationscan do to strengthen their defenses against
serious API attacks.

3

Authentication Versus Authorization
Let’s compare the differences between traditional
application development with application programming
interface (APIs) and cloud-native development. These
fundamental differences affect the tools and techniques
used to secure these applications.

Authentication is the process of verifying a user’s identity.
Essentially, it means making sure that a user is who they
say they are.

Authentication can be implemented using one or more of
the following methods:

1. 	 What a person knows (password or passphrase).

2. 	 What a person has (one-time token or physical device).

3. 	 What a person is (biometrics, fingerprint reader, facial
recognition).

Authorization, by contrast, is ensuring that a logged-in
user has the right to perform specific actions or view
certain data. For example, you may have access to view
your own personal information through a web interface,
but you shouldn’t be able to see other users’ data or have
access to administrative functions.

Both authentication and authorization are necessary
for an application to be secure. Getting into a party
(authentication), however, doesn’t automatically get you
access to the VIP lounge (authorization).

You may see authentication abbreviated to authN and
authorization abbreviated to authZ. These are shorthand
terms often used in the industry and are interchangeable
with the longer words.

AuthN and AuthZ are different
for APIs
Now that we understand the differences between
authentication and authorization, it’s time to dive into how
they are different for APIs. There are three reasons.

Reason 1: APIs are Distributed, Not Monolithic

How a web application appears to the end-user doesn’t
reflect all of the pieces used to deliver its functionality.
They experience a single interface that hides the
complexity underneath. There could be hundreds of small
microservices distributed in data centers worldwide doing
the work necessary to display everything on the page or in
your app.

Monoliths. Web applications were once monolithic.
Essentially, that meant they existed as one chunk of code
running on a server. The server did most of the work, and
one page or deliverable was passed to the browser at once.

The authentication and authorization mechanism in such a
site is simple. After the user logs in to the website, a single
database holding user information verifies their identity.
A session is created on the server, and all subsequent
requests use the session to identify the user without
another login required.

The rise of development frameworks made this process
even easier for developers. Many frameworks handle
session management out of the box, so developers didn’t
have to think much about it apart from wiring up the
essential pieces.

Distributed. Fast forward to today where web applications
consist of microservices distributed in cloud data centers.
Each microservice is a self-contained server and data store
bundled together but separate from the application’s other
functions. A client application, the one the user interacts
with, makes API calls to the services it requires to do its
job.

Authentication and authorization look entirely different
under this new distributed model. Since each microservice
has a data store, a session created in one has no meaning
to another. API calls would constantly break if the
application depended on a single session ID created by
the first server an application happened to call.

Distributed APIs require a new way of distributed authN
and authZ.

4

Reason 2: APIs Are Technology and Platform
Agnostic

For many years a company was a “Java shop” or “.NET
shop” using only those technologies. Now, developers use
many frameworks and languages across the enterprise.

Developers create microservices using frameworks and
languages that make sense for the problem they’re
solving. One microservice uses NodeJS with a MongoDB
database. Another uses Scala and GraphQL. As long as
each service adheres to the API it publishes for others to
use, the implementation doesn’t matter.

These differences between languages and frameworks
are another reason why authentication and authorization
must change for APIs. Each language and framework has
its own session management implementation, and every
microservice has a different datastore.

AuthN and authZ technology for APIs must work for any
programming language.

Reason 3: New Technologies and
Development Techniques Lead To New
Vulnerabilities

New technologies and development styles traverse a
repeating cycle of security. First, a new technology appears
on the scene that solves a problem. It catches fire in the
industry as more people discover and use it.

Unfortunately, when a new technology catches fire,
security can become a secondary concern next to the
problem it solves. Also, it’s not evident how to secure the
technology because it’s unclear how attackers will break in
or what vulnerabilities exist.

That’s why malicious actors often have an initial advantage.
They pick apart the technology and find new ways of
breaking into applications and systems. The industry
scrambles to catch up and seal the vulnerabilities
discovered.

Traditional web applications have well-known weak spots.
Over the years, many frameworks have built out-of-
the-box protections for the most common of them. For
example, frameworks such as Angular and .NET have built-
in protection against cross-site scripting and cross-site
request forgery.

The concept of APIs has been around for many years.
But the technologies used to enable the recent boom in
microservices are relatively new. These include:

· 	 Containers
· 	 Service meshes
· 	 Container orchestration (i.e., Kubernetes)
· 	 Service buses
· 	 Serverless computing
· 	 Cloud computing.

As these technologies are implemented, new ways to get
around their defenses emerge. Along with the technologies
themselves come new challenges with the logistics of
distributed, cloud-native architectures.

As a distributed architecture becomes more popular, the
need for new authentication and authorization methods
increases. These methods aren’t immune to the repeating
cycle of security.

The Danger of Broken
Authentication and Authorization
in APIs
Technologies used to create web applications have
fundamentally changed. Authentication and authorization
techniques have to change with them.

We’ve discussed three reasons why:

· 	APIs are distributed, not monolithic.

· 	APIs are technology and platform agnostic.

· 	 New technologies and development techniques lead to
new vulnerabilities.

What happens when APIs have broken authentication and
authorization?

5

Let’s turn to real-world API vulnerabilities. Look through
the examples to understand how attackers can breach
your defenses and what to look for when designing and
building your authentication and authorization system.

Shopify Breach #1: Broken Object
Level Authorization in Kit App
You can find details on this vulnerability on Hacktivity. A
hacker named Sandie found the flaw via bug bounty and
was awarded $1,000 for his efforts. This vulnerability is a
textbook Broken Object Level Authorization (BOLA) flaw,
which happens to be No. 1 on the OWASP API Top 10 list.

BOLA occurs when an attacker changes an ID parameter in
a Uniform Resource Identifier (URI) to view a resource they
are not authorized to view. Imagine a medical application
where you can change a parameter and see someone else’s
medical records.

The vulnerability found in Shopify’s Kit app isn’t quite
as catastrophic as exposing medical records but still
illustrates how BOLA can slip into any API.

The Kit app is an automation tool Shopify store owners use
to manage marketing tasks like Facebook ads, emails, and
integrated apps. The vulnerability allowed an attacker to
obtain the authorization token for a high-permission user
of Kit using a low-permission account.

The attack begins with a URI requesting an authorization
token for Shopify Ping to talk to Kit.

/api/v1/arro_token?access_token=nnnnnnn&myshopify_
domain=alwayzhack.myshopify.com&id=42668326968

This endpoint generates a token for the given account ID.
The API expected that the currently logged in user would

send their ID to the API, and all is well. Unfortunately, the
hacker discovered that passing a high-privileged user’s
ID into this endpoint would return an authorization token
for that user. The attacker could use this token to send
requests to Kit as an administrator and view previous
messages.

This type of vulnerability could be hazardous for any API.
It allows an attacker to impersonate an admin-level user
and perform any action they desire.

How can this attack be prevented? The issue is the “id”
parameter used to identify the user requesting the token.
The API assumed that the ID passed in was the ID of the
corresponding user. Instead, it should’ve checked every
request to ensure that the current user ID matched the
ID given and that the ID passed in had authorization to
operate the app or function.

Shopify Breach #2: Anyone Can
Become a Collaborator Without
the Store Manager’s Permission
The appearance of another Shopify vulnerability isn’t an
indictment of their security. It’s a compliment. They’ve
embraced thorough testing to find these issues and
disclose them so others can learn from these mistakes.

This Shopify bug exemplifies another vulnerability on the
API Top 10, Broken Function Level Authorization (BFLA).
BFLA occurs when non-privileged users can perform
certain privileged operations.

Shopify’s partner program allows service providers to
help store owners with tasks such as store design, build,
and marketing. Typically, the collaborator enters the store
URL they want to be associated with, and the store owner
approves the request. Upon approval, the browser sends a
request to a specific endpoint: /admin/settings/account/
approve/<id>.</id>

Case Studies: The Consequences of
Poor Authentication and Authorization
Practices in APIs

https://hackerone.com/reports/909863
https://owasp.org/www-project-api-security/

6

Collaborators have full access to perform any action on
the store, including reading customer data, changing
inventory, and more. A single expert can be a collaborator
on different stores.

A security researcher named Uzsunny discovered that this
endpoint didn’t check if the API call came from a store
manager. Any user could call the endpoint and approve the
request, opening the door for anyone to give themselves
administrative access to any store on the platform.

The process of requesting “collaborator” access to an
existing store contained three steps:

1. 	 The expert enters the store URL.

 2. 	The store manager receives an email about the access
request.

3. 	 Once the store manager approves the request their
browser sends an API call to:

This API call approves the access request by the expert
and converts him to a “collaborator.”

The problem: The code did not validate that the API call
was triggered by a store manager. In fact, any user could
call the API endpoint and approve the access request,
even if they don’t have the right privileges.

Using this technique Uzsunny managed to “login to any
store with full permissions.” For his troubles, Uzsunny
received a $20,000 bounty from Shopify, which reported:
“We tracked down the bug to incorrect logic in a piece of
code that was meant to automatically convert an existing
normal user account into a collaborator account.”

The exploit in step #3 looks simple and requires only a
single HTTP request: “POST /admin/settings/account/
approve/<id>”. Authorization exploits usually look legit from
a WAF/RASP perspective; they don’t contain suspicious
payloads or characters, weird HTTP headers, or abnormal
structure. In fact, if the same exact HTTP call was sent
by a different user who is a store manager it would be
completely legit.</id>

In order to understand authorization exploits, a much
broader context is needed. It’s simply not enough to look
at a single HTTP request.

BFLA flaws are sneaky and can be challenging to find. They
usually exist due to a missing authorization check in the
endpoint code or as the result of assumptions that come
back to bite you.

Facebook Breach: Password
Recovery API Allows Access To
Any Account
Facebook had an authentication bug that allowed anyone
to take over an account. It was an exploit of the password
recovery functionality.

As part of a bug bounty program, the AppSecure
cybersecurity research team found a vulnerability on the
authentication mechanism of Facebook. It gave them the
ability to potentially gain full control of the social media
giant’s more than 1 billion users. The team won a $15,000
bounty for its discovery.

This vulnerability was found on a niche API, which reminds
us that in many cases the most interesting bugs don’t
exist on main APIs but on secondary ones that have fewer
protection mechanisms in place.

https://hackerone.com/reports/270981

7

Here’s how it worked.

1.	 The user starts the “forgot password” process by using
their email address.

2.	 Facebook sends a text message with a temporary
6-digit secret token to the user.

3.	 The user enters the received temporary code, and the
browser sends an API call to “POST facebook.com/
recover/as/code/” with the secret token.

This endpoint implemented rate limiting to prevent
attackers from brute-forcing the reset code. However,
several endpoints under the beta.facebook.com and
mbasic.facebook.com domains hadn’t enabled rate
limiting.

An attacker could take over any account using this
process:

1. Enter the victim’s email address on the password
recovery page.

2. Brute force the six-digit reset code by sending
requests to the beta.facebook.com and mbasic.
facebook.com endpoints.

Facebook had implemented an anti-brute force
mechanism on this API that blocked the user after 10
failed attempts. However, during their research, the
AppSecure team found that the same API endpoint
existed on different API hosts, under “beta.facebook.com”
and “mbasic.beta.facebook.com.” These API hosts didn’t
implement the anti-brute force mechanism, allowing the
attacker to easily iterate through the secret token and
reset the victim’s password.

Anand Prakash, CEO of AppSecure and credited with
discovering the bug, explained what he found. “This gave
me full access to other user accounts by setting a new
password. I was able to view messages, their credit/debit
cards stored under their payment section, personal photos,
and other private information.”

Even though this vulnerability was primarily due to
forgotten endpoints containing old code, it illustrates that
authentication processes, especially “forgot password”
functionality, are prime targets for attackers. Any hole in
your authentication processes could lead to a catastrophic
breach.

Even though the vulnerability was discovered in 2016,
similar weaknesses have been discovered — and in many
cases exploited — ever since.

Uber Breach: Exploiting an API
Authorization Vulnerability
In September 2019 a critical bug was discovered on Uber
API, It allowed merchants, service providers, and others
to offer ride-sharing services to customers. Uber had
exposed a vulnerable API endpoint that allowed attackers
to steal valuable data, including personally identifiable
information (PII) records and authentication tokens, of
riders and drivers. A leaked authentication token could be
used to perform a full account takeover.

Luckily for the company, the vulnerability was discovered
before harm could be done. But the case is another
example of where traditional security systems fail to find
potential threats because they lack the business context
for the application’s logic. Let’s take a closer look at what
happened and the implications.

When a new Uber driver joins the platform through a
referral link, their browser communicates with the API host
“bonjour.uber.com”. The registration process triggers an
API call to the API endpoint of:

POST /marketplace/_rpc?rpc=getConsentScreenDetails

https://www.freecodecamp.org/news/responsible-disclosure-how-i-could-have-hacked-all-facebook-accounts-f47c0252ae4d/
https://appsecure.security/blog/how-i-could-have-hacked-your-uber-account
https://appsecure.security/blog/how-i-could-have-hacked-your-uber-account

8

The API receives the “userUuid” parameter from the client
and returns details about the user. This information is used
to populate the consent screen on the client-side:

As part of a legit flow, the user should send only their own
user ID.

The API endpoint is susceptible to two types of API
vulnerabilities:

· 	 BOLA. Because the program didn’t validate that the
client sending the request had access to the user
represented by the user ID parameter, the client could
access data of other users by changing the user ID.

· 	 Excessive data exposure. The API response contained
a large JSON object with all the user’s details. The API
returned this information, even though the client didn’t
use it.

These examples of real-world exploits show what can
happen when companies don’t implement authN and
authZ correctly. To be clear, it’s not a case of authN and
authZ systems being exploited, but rather that they are
not being used properly with APIs by developers. As long
as humans are writing code, mistakes can creep in. But
there are steps you can take to build secure web APIs and
reduce risk.

API Authentication and Authorization
the Right Way
Teams need to address three core elements to
develop a simple yet scalable model for API security:
safely managing logical state, support for distributed
architectures built on containers and microservices.
and enabling a web of authentication for linking loosely
coupled services.

Modern tools and frameworks can address all three of
these through the appropriate combination of the OAuth
2.0 Framework, OpenID Connect, and JSON Web Tokens
(JWT).

Manage the logical state. Traditional web security evolved
to simplify the user experience so developers found a way
to use session cookies for managing the authorization
state of a user. This reduced frustration with having to log
in repeatedly; users only had to enter passwords once,
or more if the credentials were stored. However, session
cookies were vulnerable to session hijacking attacks
that took advantage of limited security around cookies.
A better practice is to securely manage the logical state
using tokens instead of cookies.

Need for distributed authorization methods. Web
applications assumed that one browser client would
access one web application connected to one or more
databases. The web page would be assembled in
the middle and then passed to the user. But modern
applications allow new architectures in which one client,
like a mobile app, builds the user interface from multiple
APIs. Each API, in turn, may manage interactions with
multiple microservices. Early security frameworks like
OAuth 1.0 supported direct access but did not scale for
distributed architectures.

Web of authentication. Distributed security needs to strike
the right balance between the number of authentication
efforts on back end servers and the overhead and latency
each call adds. In a complex authentication flow the
client authenticates to an initial service, which in turn
authenticates with another back end service, and so forth
until the request is completed. One strategy is to use
public-key cryptography to allow each service to validate
new requests locally using a chain of interconnected
public-keys on top of OpenID Connect.

https://inonst.medium.com/a-deep-dive-on-the-most-critical-api-vulnerability-bola-1342224ec3f2

9

OAuth 2.0 Provides Distributed
Authorization
As websites began to take off, so did the number of
security schemes for simplifying access using session
cookies.

In late 2006, Blaine Cook, the chief architect at Twitter,
began dreaming up the framework for a more generic
approach that could be shared across websites, which
evolved into OAuth 1.0. Unfortunately, there were
ambiguous elements that could be implemented
differently, and there was quite a bit of disagreement
between mainstream websites and enterprise vendors on
how it would work.

One big challenge was that the authentication scheme
was baked into the specification, making it hard to
support applications like mobile or microservice design
patterns. So, work began on OAuth 2.0 spec, which was
more generic but also lacked support for a specific way to
manage the security state. OAuth 2.0 only shares the goal
of OAuth 2.0 and is not backward compatible.

OAuth does a better job separating the roles of security
servers and authorization servers. It introduces the
notion of a client, authorization server, resource server,
and resource owner. This makes it easier to describe the
authorization flow that can protect sessions from being
hijacked and reduces the threat of business logic attacks
on the back end server.

There was some contention with OAuth 2.0 when vendors
implemented different versions of the draft standard.
Major vendors started implementing OAuth 2.0 after
draft 10, and then another 22 revisions were made.
Different vendors adopted parts of these that would not
interoperate. Eventually, the maintainers of the standard
pulled out the conflicting pieces and renamed the
protocol a framework. Other pieces were required to
support authentication, tokens, and claims.

Adding Authentication With
OpenID Connect
To build consensus, many things were left out of OAuth
2.0, such as the token type and identity framework.
OpenID Connect adds an interoperable protocol to OAuth
2.0. This complements OAuth’s extensive library of flows
used to manage access for sharing resources across
services.

The significant innovation is that developers can
authenticate users without creating and maintaining
a separate password file. This improves security since
these files are sometimes compromised. It is the third
generation of technology. The first version was not widely
adopted. The second version, OpenID 2.0, was more
fleshed out but difficult to implement since it relied on
XML.

OpenID Connect is much simpler and takes advantage of
JSON, making it more accessible to modern developers.
Popular security libraries and development tools natively
support OpenID Connect, which further simplifies
implementation. OpenID 2.0 required a customer
signature system that was problematic and prone to
errors. OpenID Connect introduced JSON Web Tokens,
which are much easier to implement.

Replacing Cookies With JWT
In 2011 researchers began exploring how JSON could
simplify web security in the same way it simplified APIs.
John Bradley and Nat Sakimura introduced a simple
signing mechanism for JSON, which evolved into the JWT
framework spelled out in RFC 7519 in 2015. The core spec
talks about representing “claims” digitally encoded inside
a JSON payload as a token.

The token structure includes a header, payload, and
signature. The header indicates the type of token
and the signing algorithm. The payload includes the
cryptographically signed claims. The signature is a hash
generated by applying the sender’s private-key to the
payload.

https://www.oauth.com/oauth2-servers/background/
http://www.thread-safe.com/2015/01/jwt-5-years-in-making-history.html
https://tools.ietf.org/html/rfc7519

10

The tokens are used to encrypt data between parties
in a way that hides it from others or for applying digital
signatures that allow the recipient to validate the
integrity of claims in a communication. A claim is any
statement issued by the appropriate source that can be
cryptographically verified. Claims can be used to verify
who issued the JWT, that the appropriate subject uses
them, that they are delivered to the appropriate recipient,
and when they expire. They may also include publicly
registered claim names (i.e., Google) in a special JWT
database or private claim names for use in a restricted
flow.

JWT provides several benefits over token schemes like
Simple Web Tokens (SWT) and Security Assertion Markup
Language (SAML). SWT required symmetric security,
which complicated the authorization flow. Both SAML and
JWT can use public-key cryptography in which a pair of
public/private keys can verify the source and hide the
data. JWT is also more efficient than SAML, which reduces
the overhead and packet sizes. JSON also aligns better
with JSON API techniques. They are also easier to process.

Common Use Cases
The most common use case is authorization. After a
user or service has been authenticated subsequent
communications can use the JWT to access services
permitted for that user or service. It is commonly used
as part of a single sign on implementation since it can be
used across multiple domains.

Secure information exchange is another common use
case. In these instances, the JWT is used to sign and
encrypt a transmission using a private/public key pair. The
recipient can verify the source, and that the data has not
been tampered with by using the public-key and its own
private-key to decode the message.

Scopes provide a way of limiting appropriate access to a
subset of resources. For example, one scope would give
you access to the free tier of a nifty customer relationship
management (CRM) service, while another scope would
provide access to all the extra features available on the
gold tier. Scopes can also limit access based on who owns
the data. The scope could limit access to view all the
enterprise’s customers stored in the CRM system but not
see records created by others.

Better Security Through Multiple
Approaches
Enterprises can roll their own security by combining
the appropriate encryption libraries. But this can add
additional overhead for maintaining and updating these
components. A much better practice is to combine
industry-leading frameworks and tools such as OAuth
2.0 for authZ, OpenID Connect for authN, and JWT to
implement encrypted tokens. The combination of these is
well documented and can provide the best framework for
protecting the API infrastructure.

More importantly, enterprises can benefit from the wide
use of these tools as new threats are discovered and new
best practices evolve.

Enterprises should also consider how to protect the
business logic that operates across this infrastructure.
Microservice architectures can expose more API
endpoints to outsiders. Modern API observability tools
like Traceable can provide another layer of protection
at the business logic level that might be blocked by
traditional authN and authZ tools.

Why Current Security Solutions
Can’t Detect It
Let’s tackle the obvious question. Automated testing tools
are becoming increasingly sophisticated. Why can’t they
find authN and authZ vulnerabilities while developers are
writing code or in a testing environment?

Security testing tools like Static Application Security
Testing (SAST) and Dynamic Application Security Testing
(DAST) aren’t effective at finding authentication and
authorization vulnerabilities. SAST tools scan source code
with no knowledge of the architecture or business logic.
DAST tools are great at finding vulnerabilities against
running applications, but complicated business logic
escapes them.

Interactive Application Security Testing (IAST) is
probably the best option for discovering these types of
vulnerabilities but still not a100 percent solution.

In addition, testing tools can’t predict what unique set of
steps might lead to a compromise. Authentication and
authorization systems are complex with many steps.

https://www.traceable.ai/blog-post/does-sast-deliver-the-challenges-of-code-scanning
https://www.traceable.ai/blog-post/does-sast-deliver-the-challenges-of-code-scanning
https://www.traceable.ai/blog-post/does-sast-deliver-the-challenges-of-code-scanning

11

There is frequent back-and-forth communication
between the client and API. There are password recovery
systems, login implementation, and service-to-service
authentication. All of these moving parts lead to
unexpected interactions.

When we look carefully at the exploitation flow in the Uber
case, we find the attack involved a very subtle change
in the API call, replacing one user ID with another. In
order to detect such a small change in the traffic, a deep
understanding of the business logic of the app is required.
Many security solutions don’t understand business logic.

How Traceable Solves the
Problem
Keeping track of your APIs is not an easy task. Modern
organizations might have dozens or even hundreds of
API hosts for different environments, regions, or versions.
Each API host can expose multiple endpoints related to
authentication processes including login, forgot password,
and one-time login link.

Many security solutions focus on protecting a system’s
main APIs and don’t have enough visibility into less
common or less used APIs, such as Facebook’s beta API
in the example above. Sophisticated attackers choose to
target those niche APIs.

Our approach to detecting API attacks is very different
from other solutions on the market. In a nutshell, we
observe the data that passes through the API and the
microservices of the app. We then use machine learning
algorithms to discover the application’s business logic.

We get full visibility into the users and their roles, the API
endpoints they communicate with, and the resources
the endpoints interact with behind the scenes. Now we
can create a baseline understanding of a legit user’s flow
through the system.

The visibility into users helps us understand that the
client is actually a guest user, and the visibility into the
API helps us to recognize that the endpoint is an admin
endpoint that should be used only by store managers.
Then we can simply block malicious abnormal activity.

With this approach we can detect the most sophisticated
and subtle API attacks, including Broken Function Level
Authorization.

Current security solutions in the market lack that
understanding, usually acting in the context of a single
HTTP request. They don’t understand deeply enough
the important components of the application required to
detect BOLA and other authorization vulnerabilities.

Conclusion
Even though the transition to digital was promoted to
organizations with claims that the cloud would be more
secure than traditional on-prem and network computer
systems, it turns out that this was only partly true.

As is always the case, clever cybercriminals have
adapted to the challenges of breaking into distributed
architectures, in part by exploiting missing or incorrectly
implemented authN and authZ protections.

Now it’s up to your security system to leapfrog ahead.
Again.

About the Authors
Justin Boyer, George Lawton, and Inon Shkedy
contributed to this white paper.

https://www.traceable.ai/product#technology

About us.

Traceable was founded by third-time entrepreneur Jyoti
Bansal and Sanjay Nagaraj. Bansal and Nagaraj saw the massive
adoption of cloud-native architectures firsthand during their
time at AppDynamics and founded Traceable as a result to
protect applications from next-generation attacks.

Traceable applies the power of machine learning and
distributed tracing to understand the DNA of the application,
how it is changing, and where there are anomalies in order
to detect and block threats, making businesses more secure
and resilient.

Traceable.ai

https://www.traceable.ai/

