
C A N S E C U R I T Y
K E E P U P W I T H
T H E P A C E O F

C H A N G E ?

N E W T E C H N O L O G I E S A R E R E V O L U T I O N I Z I N G

S O F T W A R E D E V E L O P M E N T , B U T T H E Y

P O T E N T I A L L Y C O M E W I T H T H E I R O W N

V U L N E R A B I L I T I E S . I S M O D E R N A P P L I C A T I O N

D E V E L O P M E N T L E A V I N G Y O U O P E N T O

A T T A C K ?

Doc ver: 2021-01-20-01

If you’ve spent any length of time in

application development, you’re

familiar with change. It’s the only

constant.

And along with how we build

applications come changes in the

techniques used to keep them

secure.

Securing modern applications

requires more diligence than ever

before.

New technologies and techniques

such as GraphQL and cloud-native

platforms promise outstanding

benefits for developers and

organizations. But these

improvements come with a

potentially devastating price to pay:

it's not always clear how to secure

them, nor what vulnerabilities they

may introduce.

“THE ONLY WAY TO MAKE SENSE OUT OF
CHANGE IS TO PLUNGE INTO IT, MOVE
WITH IT, AND JOIN THE DANCE.” — ALAN
WATTS

If organizations are slow to learn the

differences between new and old

technologies from a security

perspective, they’ll be left open to

attack.

Let’s look at how modern application

development has changed the

security and threat landscape and

how companies can overcome these

challenges.

R E D B O X M A R K E T I N G

The traditional web

application operates like

ordering food from a

restaurant menu. From a list

of dishes available you ask

for one. The chef decides

which ingredients are

necessary and how the plate

looks when it arrives.

Let’s say you want to see a

dashboard of marketing

metrics, and thus your

browser retrieves

example.com/dashboard.jsp.

The client doesn’t control

what’s on the dashboard; it

just knows to ask for it.

T h e w e b s e r v e r p u l l s d a t a

f r o m t h e d a t a b a s e .

T h e s e r v e r b u i l d s a n H T M L

p a g e w i t h t h e d a t a p l a c e d

i n s i d e .

T h e s e r v e r r e t u r n s t h e

r e n d e r e d H T M L p a g e t o t h e

c l i e n t .

1 .

2 .

3 .

Traditional Web Applications:

Ordering From a Menu
The web server decides what data goes into the

dashboard and where the data goes. The client simply

asks for a resource and displays what the server returns.

The web server processes the request in three steps:

In a traditional model, the client typically has very little code. It requests a URL from the server and
displays what comes back. All rendering and data processing happens on the server.

R E D B O X M A R K E T I N G

Modern web applications put

the client in control. It’s more

like a buffet than a sit-down

restaurant.

The client is often a Single-

Page Application (SPA), or an

application that dynamically

updates the same page

instead of always requesting

a new one from the server.

In a buffet, you take your

plate and pick and choose

the foods you want. Each dish

can have multiple

configurations based on your

needs at the time.

SPAs work like those plates.

Instead of a single server

creating an entire page and

returning it to the client, the

client knows how to make the

page and asks only for the

data required to do it.

Modern Web Applications: Buffet Style

Typically, Application Programming Interfaces or APIs

provide this data to the client. Business logic is

exposed to clients using APIs that return only what the

client needs. Maybe the client only wants the last 20

notifications for an account or the ten most recent

emails.

The use of APIs for business logic and data retrieval

opens up the world of application development. You

no longer need to build a web application. You can use

a mobile application instead. You can use any

technology or form factor to access the data, from

mobile to Internet of Things (IoT) or other developers

building applications of their own .JSON, a lightweight

data format, is one of the most useful enabling

technologies for modern applications. It allows all of

the APIs, the client, and the database to store and

transmit data using the same format. There are no data

transformations necessary, which helps keep the

application responsive.

Going back to the above dashboard example, an SPA

wouldn’t ask the server for the entire dashboard at

once. Instead, it would ask the appropriate APIs for the

specific data it needs to build the dashboard itself.

The desire for APIs and for ultimate flexibility and speed of development gave way to the

creation of microservices. These services are intentionally small to be updated independently

of each other and more frequently.

SPAs emphasize the client, leading to more complex code in the clients and the risk of

security vulnerabilities in the clients (more on that later). But this change has opened up

transformational technologies like IoT devices.

R E D B O X M A R K E T I N GModern Web Applications: Buffet Style

In a modern application, the client asks for the data it requires to build the page itself.
Small, self-contained services do one thing well.

A common theme in the evolution of

application development has been

toward breaking functionality and

features into smaller and more

granular components. Just as with

the SPA example above, the

functionality of the web page is in

isolated components. The same

trend is true when you look at

application architecture in general.

Where a legacy application might

have been designed with separate

modules and functions, each

internally making calls to each

other, modern design now breaks

out separate functions into discrete

services.

FROM MONOLITHS TO MICROSERVICES — A

RESPONSE TO THE ACCELERATING PACE

OF CHANGE

Consider an ‘address verification’

service that can be used by many

other applications. The functionality

of validating an address is decoupled

from the ‘customers’ that use the

service, which introduces value into

the delivery lifecycle. This approach

enables development teams to focus

on smaller, more granular changes

and therefore shorten their cycle time

and accelerate delivery.

Business leaders everywhere are

demanding faster delivery from their

technology teams. As a result, teams

have adopted new ways of working

and new ways of architecting their

solutions. Enter Agile, CI/CD, and

DevOps tools. Similarly, application

development and architectures have

evolved to increase velocity.

We are implementing features and products and using technology that

were not invented 18 months ago. No longer can we afford these large

monolithic programs that go on for two to three years. We know that what

we set out to do at the beginning of that time is not what we will finish out

doing. So, we are focusing on very rapid delivery cycles, asking ourselves:

How do we mobilize a project very quickly? How do we use the right

delivery techniques to work through it quickly? How do we get product

into market or to customers or into the business?”

-- Bronwyn Clere, Executive Director for Capital Planning & Delivery, at

Telstra Corporation, PMI Pulse of the Profession Report 2017

https://www.pmi.org/-/media/pmi/documents/public/pdf/learning/thought-leadership/pulse/pulse-of-the-profession-2017.pdf

R E D B O X M A R K E T I N GA Tour of Cloud-Native Architecture

The increasing pace of change would

put significant stress on any IT

infrastructure. But cloud-native

architecture has fundamentally

changed how applications can be built

and scaled.

Cloud-native technologies, such as

containers, service meshes,

microservices, immutable

infrastructure, and declarative APIs,

empower developers to build and run

scalable applications on public, private,

and hybrid clouds.

Cloud-native architecture focuses on

creating loosely coupled services with

high resiliency. Developers can make

changes frequently without negatively

impacting the entire system.

Below is a diagram of Microsoft’s

eShopOnContainers open-source application.

It demonstrates what a real-world application

looks like using cloud-native technologies.

In this example, the development team

building the Marketing microservice can make

changes as often as they want without

affecting the ordering or cart functionality.

Different technologies can be used within

each service, and each service has a separate

datastore.

Flexibility and speed are the hallmarks of

modern development.

The bulk of cloud-native applications include many microservices deployed in containers. Each service is isolated from the others and
can be destroyed and recreated easily without affecting other services.

R E D B O X M A R K E T I N G

The pace of change affects more than technology. Processes, management styles,

and even ways of thinking have to adjust to make modern application development

successful within your company.

Because of the intensive need to shorten delivery

cycles and to automate delivery, cloud-native

architectures embrace delivery practices that

support short and responsive turnaround.

Developers can deploy new code in seconds,

with some companies pushing new code to

production hundreds of times a day.

D E L I V E R Y : T H I N K A G I L E A N D

D E V O P S

The days of ‘throw it over the wall’ and let

Operations manage the application are over.

In order to successfully scale adoption of cloud-

native applications, you need to explore and

embrace “Product Management” over “Project

Management” as a practice to manage the

application 's full lifecycle..

P R O D U C T I O N : T H I N K

P R O D U C T S , N O T P R O J E C T S

The traditional approach of building a fortress of

defensive walls and moats around the application

and then "trust" the activity inside is secure , is

insufficient in a world where individual elements of

the application are expected to communicate with

other components .

The new security paradigm is one where each

microservice must have security built-in , They need

to embrace "zero trust" as a policy for how they

operate . Validate every request before acting on it .

S E C U R I T Y : V A L I D A T E

E V E R Y T H I N G

3 Necessary Mindset Shifts For

Cloud-Native Success

New technologies and techniques

such as GraphQL and cloud-native

platforms promise outstanding

benefits for developers and

organizations. But these

improvements come with a

potentially devastating price to pay:

it’s not always clear how to secure

them, nor what vulnerabilities they

may introduce.

If organizations are slow to learn the

differences between new and old

technologies from a security

perspective, they’ll be left open to

attack.

Let’s look at how modern

application development has

changed the security and threat

landscape and how companies can

overcome these challenges.

PROTECTING AGAINST THE HIDDEN

THREATS OF NEW TECHNOLOGIES

New technologies are

revolutionizing software

development, but they

potentially come with their

own vulnerabilities. Is

modern application

development leaving you

open to attack?

A hacker attacks

every 39 seconds

I N C R E A S E D

A T T A C K S

The average cost of

a data breach is $3.9

million

E X P E N S I V E

D A T A B R E A C H E S

Fearmongering isn’t our style, but it’s dangerous to

ignore the reality of the cyberworld. Hackers have found

the new oil: data. And they’ll go to great lengths to take

it from those who have it.

N E W

T E C H N O L O G I E S ,

N E W T H R E A T S

43% of cyber attacks

target small

businesses

S M A L L

B U S I N E S S E S

T A R G E T E D

F R E E R E I G N

The most devastating statistic may be this: It

typically takes about six months for companies

to discover a data breach. How much damage

could an attacker do with six months of free

playtime in your network?

39 43
seconds percent

3.9
million

6
months

High Rate and Cost of Hacking
Attempts Requires Action

Data privacy legislation has

increased in response to growing

concerns from consumers.

The EU’s Global Data Protection

Regulation (GDPR) fundamentally

changed how companies handle

customer data. 88% of companies

spent more than $1 million preparing

to implement the rule.

The GDPR did more than increase

data-protection requirements.

Legislators saw for the first time the

possibilities of holding companies

accountable for how they use,

handle, and protect customer data.

This game-changing regulation has

led to several federal and state

laws in the United States with similar

goals.

INCREASED DATA PRIVACY LEGISLATION

FORCES COMPANIES TO SECURE DATA

The Federal Trade Commission Act

The Children’s Online Privacy Protection

Act (COPPA)

The Health Insurance Portability and

Accounting Act (HIPAA)

The Gramm Leach Bliley Act

The Fair Credit Reporting Act

California Consumer Privacy Act (CCPA)

New York’s Stop Hacks and Improve

Electronic Data Security (SHIELD) Act

Federal laws that impact the collection and

storage of consumer data include:

Many states have also issued regulations that

govern the use of their residents’ personal

information:

The trend is clear. Companies must take better

care of their customers’ information or face

consequences that can ruin their brand, destroy

customer loyalty, and lead to enormous fines

and other legal penalties.

Web application security

practices have changed along

with application architecture.

The OWASP Top 10 has been

the go-to list of security

vulnerabilities for some time.

However, this list isn’t as

applicable to modern API-

based applications.

As development frameworks

have evolved, many have

added protections out of the

box against the most common

vulnerabilities. Because of

this, the proper configuration

of development frameworks

mitigates and eliminates many

OWASP Top 10 vulnerabilities.

Cloud-native architectures are

a different way of building

applications. Much of security

is context, and the context

completely changes in a

cloud-first environment.

APIS REQUIRE NEW APPLICATION SECURITY

TECHNIQUES

Issue Solved By

SQL Injection

CSRF

XSS

Path Manipulation

XXE

ORMs

Use of authorization

header

Clients are

responsible

Cloud-based storage

JSON

This table shows several "classic" web

application vulnerabilities and the ways they

are solved by default when using APIs.

Does this mean API developers can breathe easy
because all of their security concerns are gone?

Changing the context changes the attack vectors and
vulnerabilities. The “old” vulnerabilities make way for

new threats that developers have to learn how to
mitigate.

APIs and microservices provide

unprecedented flexibility and speed of

development.

However, new technologies used to

build APIs also give rise to new

threats. For example, a set of APIs that

each expose a small part of the

business logic could make it easier for

attackers to figure out your backend

logic. They can watch network

connections and see the URLs the

client is calling and in what sequence.

APIs are predictable. Most follow

Representational State Transfer

architecture or some variation of it.

Because of this, common patterns

develop and attackers know how to

exploit them. An API with the URI

/api/users/{id} is searching for a user

with the specified identifier. An

attacker could deduce that a call to

/api/admin would lead them to the

admin interface.

API SECURITY IN THE CLOUD-NATIVE WORLD

Core technologies

OAuth2

OpenID Connect

Mutual TLS (client and server

certificates)

Frameworks to help manage API security

API gateways

Service meshes

Secure Production Identity Framework

For Everyone (SPIFFE)

 Solving authentication in APIs is a bigger

topic than we have space to discuss, but

here are ways to implement authentication

and authorization between APIs:

Authorization is the most daunting challenge

facing API developers. Monolithic

applications log in the user once, store

authorization information in the session, and

never think about it again. APIs are loosely

coupled, platform-agnostic, and built to be

lightweight.

Application development is undergoing a renaissance. Towering monoliths and slow

delivery cycles have given way to agile microservices and daily production releases.

Along with these changes come new threats and new mitigation strategies.

Traceable AI is built to detect, warn, and protect against these new threats to cloud-

native applications.

 View a demo of Traceable today. You'll see first hand how Traceable AI reduces

breaches, false positives, and cost while securing your next-gen application.

THE CHANGING NEEDS OF MODERN

APPLICATION SECURITY

“TIMES AND CONDITIONS CHANGE SO

RAPIDLY THAT WE MUST KEEP OUR AIM

CONSTANTLY FOCUSED ON THE FUTURE.” --

WALT DISNEY

https://www.traceable.ai/view-traceable-demo

